
International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

An Effective Approach for Protecting Web from
SQL Injection Attacks

Veera Venkateswaramma P

 Abstract- The databases that underlie web applications were facing issues like, unauthorized access, so many security threats in recent years. Many
software systems have evolved to include a Web-based component that makes them available to the public via the Internet and can expose them to a
variety of Web-based attacks. One of these attacks is SQL injection, which can give attackers unrestricted access to the databases and has become
frequent and serious threat to them. Successful injection attack can give attackers access to and even control of the databases that underlay Web
applications, which may contain sensitive or confidential information. This paper presents a new highly automated approach for protecting Web
applications against SQL injection that has both conceptual and practical advantages over most existing techniques. From a practical standpoint, our
technique is precise and efficient, has minimal deployment requirements, and incurs a very low performance overhead in most cases. We have
implemented this technique (Injection preventer), which we used to perform an empirical evaluation on a wide range of Web applications that we
subjected to a large and varied set of attacks and legitimate accesses.

Keywords- SQL Injection, Security, Syntax- aware, Positive tainting, Character level tainting.

1. INTRODUCTION

 The security is an important aspect to the
organizations which are developing web applications. It is a
great challenge to the organizations to protect their valuable
data against intruders, corruptions and malicious accesses
[2].Actually the developers in the organizations are
concentrating mostly on applications usability and
functionality, rather than enforcing security standards. In
general, SQL injection vulnerabilities are caused by
inadequate input validation within an application [2].Input
validation is a major security aspect if an attacker finds that an
application makes attempt has been made to increase the
efficiency of the above unfounded assumptions about the
type, length, format, or techniques by a combinatorial
approach for protecting web range of input data. The attacker
can then supply a malicious application against SQL Injection
attacks input that compromises an application. The external
interfaces exposed by an application become the only source
of attack besides the other interfaces network and host level
entry points are secure. Since this injection attack is a major
threat in web applications development that underlies
databases which may breach the database security
mechanism, Such as availability and issues like authorization,
integration, and authentication. A SQL injection attack
consists of
insertion or "injection" of a SQL query via the input data from
the client to the application. A

successful SQL injection exploit can read sensitive data from
the database, modify database data
(Insert/ Update/Delete), execute administration operations on
the database (such as shutdown the DBMS), recover the
content of a given file present on the DBMS file system and in
some cases issue commands to the operating system. SQL

injection attacks are a type of injection attack, in which SQL
commands are injected into data-plane input in order to effect
the execution of predefined SQL commands. These attacks
may bypass the security mechanisms like intrusion detection
systems, firewall and cryptography. Attackers take advantage
of these vulnerabilities by submitting input strings that
contain specially-encoded database commands to the
application. When the application builds a query using these
strings and submits commands are executed by the database
and the attack succeeds.

The most worsening part of these injection attacks is they

are very easy to perform, even though developers of the
applications have an idea about these attacks. The main
concept is based on the idea is a malicious user counterfeits
the data that a web application sends to the database focusing
at modification of sql query which gets executed by DBMS
software. The input validation issues can allow the hackers to
gain access to the database systems. All most all technologies
that use database system were facing these vulnerabilities due
to these attacks [3]. So many techniques have been developed
to counter these attacks, but they are lack of practicality and
efficacy. Initially a technique was proposed as a solution to
counter these injection attacks based on defense coding. This
practice was not efficient due to these problems. They are 1)
solutions based on defensive coding will address only a subset
of possible attacks. 2) Legacy systems address another
problem because of expense and complexity of making the
existing code so that is compliant with defensive coding. 3) It
is a great difficult to develop code based on defense code
practices.

2. PROPOSED WORK

In this paper an attempt has been made to overcome the
above difficulties and to improve the efficiency of above

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

techniques by a conceptual approach for protecting web
applications against sql injection attacks. It contains four
sections namely section A. conceptual approach, section B.
contains types of injection vulnerabilities, section C contains
Mitigation. The rest of the paper section D. present‟s signature
based approach and auditing of the database.

A. CONCEPTUAL APPROACH

 Intuitively, our approach works by identifying
“trusted” strings in an application and allowing only these
trusted strings to be used to create certain parts of an SQL
query, such as keywords or operators. The general mechanism
that we use to implement this approach is based on dynamic
tainting [4] which marks and tracks certain data in a program
at runtime. The kind of dynamic tainting we use gives our
approach several important advantages over techniques based
on different mechanisms [5]. It involves positive Tainting,
character level tainting, syntax-aware evaluation.

 i. Positive Tainting: Positive tainting [5] differs from
traditional tainting (hereafter, negative tainting) because it is
based on the identification, marking, and tracking of trusted,
rather than un-trusted data. This conceptual difference has
significant implications for the effectiveness of our approach,
in that it helps address problems caused by incompleteness in
the identification of relevant data to be marked. In the case of
negative tainting, incompleteness leads to trusting data that
should not be trusted and, ultimately, to false negatives.
Incompleteness may thus leave the application vulnerable to
attacks and can be very difficult to detect, even after attacks
actually occur, because they may go completely unnoticed.
With positive tainting, incompleteness may lead to false
positives, but it would never result in an SQLIA escaping
detection. Moreover, as explained in the following, the false
positives generated by our approach, if any, are likely to be
detected and easily eliminated early during prerelease testing.
Positive tainting uses a white-list, rather than a black-list,
policy and follows the general principle of fail-safe defaults, as
outlined by Saltzer and Schroeder [6]. In case of
incompleteness, positive tainting fails in a way that maintains
the security of the system. In the context of preventing
SQLIAs, the conceptual advantages of positive tainting are
especially significant. The way in which Web applications
create SQL commands makes the identification of all un-
trusted data especially problematic and, most importantly, the
identification of most trusted data relatively straightforward.
In general, it is difficult to guarantee that all potentially
harmful data sources have been considered and even a single
unidentified source could leave the application vulnerable to
attacks. The situation is different for positive tainting because
identifying trusted data in a Web application is often
straightforward and always less error prone. In fact, in most
cases, strings hard-coded in the application by developers

represent the complete set of trusted data for a Web
application. To account for these cases, our technique provides
developers with a mechanism for specifying sources of
external data that should be trusted. The data sources can be
of various types such as files, network connections, and server
variables. Our approach uses this information to mark data
that comes from these additional sources as trusted .In a
typical scenario, we expect developers to specify most of the
trusted sources before testing and deployment. In other
words, false positives are likely to occur only for totally
untested parts of applications. Therefore, even when
developers fail to completely identify additional sources of
trusted data beforehand, we expect these sources to be
identified during normal testing and the set of trusted data to
quickly converge to the complete set.

ii. Character Level Tainting We track taint information at
the character level rather than at the string level. We do this
because, for building SQL queries, strings are constantly
broken into substrings, manipulated, and combined. By
associating taint information to single characters. Our
approach can precisely model the effect of these string
operations. Another alternative would be to trace taint data at
the bit level, which would allow us to account for situations
where string data are manipulated as character values using
bitwise operators. However, operating at the bit level would
make the approach considerably more expensive and complex
to implement and deploy. To accurately maintain character-
level taint information, we must identify all relevant string
operations and account for their effect on the taint markings.
Our approach achieves this goal by taking advantage of the
encapsulation offered by object oriented languages, in
particular by Java, in which all string manipulations are
performed using a small set of classes and methods. Our
approach extends all such classes and methods by adding
functionality to update taint markings based on the methods‟
semantics.

iii. Syntax-Aware Evaluation Our technique performs
syntax-aware evaluation of a query string immediately before
the string is sent to the database to be executed. To evaluate
the query string, the technique first uses a SQL parser [7] to
break the string into a sequence of tokens that correspond to
SQL keywords, operators, and literals. The technique then
iterates through the tokens and checks whether tokens (that is,
substrings) other than literals contain only trusted data. If all
such tokens pass this check, the query is considered safe and is
allowed to execute. If an attack is detected, a developer
specified action can be invoked. This approach can also handle
cases where developers use external query fragments to build
SQL commands. In these cases, developers would specify
which external Consider the malicious query, where the
attacker submits “admin‟ – –” as the login and “0” as the pin.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Shows the sequence of tokens for the resulting query, together
with the trust markings. Recall that “– –” is the SQL comment
operator, so everything after this is identified by the parser as
a literal. In this case, the Meta Checker would find that the last
two tokens,‟ and __, contain untrusted characters. It would
therefore identify the query as an SQLIA.

B. INJECTION VULNERABILITIES

i. Incorrectly filtered escape characters
This form of SQL injection occurs when user input is not
filtered for escape characters and is then passed into an SQL
statement. These results in the potential manipulation of the
statements performed on the database by the end-user of the
application. The following line of code illustrates this
vulnerability Statement = "SELECT * FROM users WHERE
name = '" + username + "';" This SQL code is designed to pull
up the records of the specified username from its table of
users. However, if the "username" variable is crafted in a
specific way by a malicious user, the SQL statement may do
more than the code author intended. For example, setting the
"username" variable as „or '1'='1 Or using comments to even
block the rest of the query (there are three types of SQL
comments): ' or '1'='1' --‟ „or '1'='1' ({„ ' or '1'='1' /*‟ Renders one
of the following SQL statements by the parent language:
SELECT * FROM users WHERE name = '' OR '1'='1'; SELECT *
FROM users WHERE name = '' OR '1'='1' -- '; If this code were
to be used in an authentication procedure then this example
could be used to force the selection of a valid username
because the evaluation of '1'='1' is always true.

The following value of "username" in the statement
below would cause the deletion of the "users" table as well as
the selection of all data from the "userinfo" table (in essence
revealing the information of every user), using an API that
allows multiple statements: a‟; DROP TABLE users; SELECT *
FROM userinfo WHERE ‟t‟ =„t‟ This input renders the final
SQL statement as follows: SELECT * FROM users WHERE
name = 'a‟; DROP TABLE users; SELECT * FROM userinfo
WHERE ‟t‟ =„t‟; While most SQL server implementations allow
multiple statements to be executed with one call in this way,
some SQL APIs such as PHP's mysql_query(); function do not
allow this for security reasons. This prevents attackers from
injecting entirely separate queries, but doesn't stop them from
modifying queries.

ii. Incorrect type handling This form of SQL injection
occurs when a user supplied field is not strongly typed or is
not checked for type constraints. This could take place when a
numeric field is to be used in a SQL statement, but the
programmer makes no checks to validate that the user
supplied input is numeric. For example: Statement: =
"SELECT * FROM userinfo WHERE id = " + a_variable + ";" It

is clear from this statement that the author intended
a_variable to be a number correlating to the "id" field.
However, if it is in fact a string then the end-user may
manipulate the statement as they choose, thereby bypassing
the need for escape characters. For example, setting a_variable
to 1; DROP TABLE users Will drop (delete) the "users" table
from the database, since the SQL would be rendered as
follows: SELECT * FROM userinfo WHERE id=1; DROP
TABLE users;

iii. Blind SQL Injection Blind SQL Injection [8] is used when
a web application is vulnerable to an SQL injection but the
results of the injection are not visible to the attacker. The page
with the vulnerability may not be one that displays data but
will display differently depending on the results of a logical
statement injected into the legitimate SQL statement called for
that page. This type of attack can become time-intensive
because a new statement must be crafted for each bit
recovered. There are several tools that can automate these
attacks once the location of the vulnerability and the target
information has been established.

iv. Conditional Responses One type of blind SQL injection
forces the database to evaluate a logical statement on an
ordinary application screen. SELECT booktitle FROM booklist
WHERE bookId = 'OOk14cd' AND '1'='1'; Will result in a
normal page while SELECT booktitle FROM booklist WHERE
bookId = 'OOk14cd' AND '1'='2'; Will likely give a different
result if the page is vulnerable to a SQL injection. An injection
like this may suggest to the attacker that a blind SQL injection
is possible, leaving the attacker to devise statements that
evaluate to true or false depending on the contents of another
column or table outside of the SELECT statement's column
list. SELECT 1/0 FROM users WHERE username='000';

C. MITIGATION

i. Parameterized Statements With most development
platforms, these parameterized statements can be used that
work with parameters (sometimes called placeholders or bind
variables) instead of embedding user input in the statement
[9]. In many cases, the SQL statement is fixed, and each
parameter is a scalar, not a table. The user input is then
assigned (bound) to a parameter. This is an example using
Java and the JDBC API: Java.sql.PreparedStatement prep =
connection.prepareStatement ("SELECT * FROM users
WHERE USERNAME =? AND PASSWORD =?");
prep.setString (1, username); prep.setString (2, password);
prep.executeQuery ();

ii. Enforcement at the code level Using object-relational
mapping libraries avoids the need to write SQL code. The

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ORM library in effect will generate parameterized SQL
statements from object-oriented code [9].

iii. Escaping A straightforward, though error-prone, way to
prevent injections is to escape characters that have a special
meaning in SQL [10]. The manual for an SQL DBMS explains
which characters have a special meaning, which allows
creating a comprehensive blacklist of characters that need
translation. For instance, every occurrence of a single quote (')
in a parameter must be replaced by two single quotes ('') to
form a valid SQL string literal. For example, in PHP it is usual
to escape parameters using the function
mysql_real_escape_string (); before sending the SQL
query:query = Sprintf ("SELECT * FROM `Users` WHERE
Username='%s'AND password= '%s'"
,mysql_real_escape_string ($Username),
mysql_real_escape_string ($Password)); mysql_query
($query); This function, i.e. mysql_real_escape_string (), calls
MySQL's library function mysql_real_escape_string, which
prepends backslashes to the following characters: \x00, \n, \r,
\, ', “and \x1a. This function must always (with few
exceptions) be used to make data safe before sending a query
to MySQL. [10].

 D. SIGNATURE APPROACH It is based on the signature
based approach to address the injection attacks which
occurred due to input validations. It contains three modules
and used Hirschberg algorithm to compare the statements
from specifications and a hotspot .Hot spot is that line where it
gets the input from the user and vulnerable in execution. This
step performs a simple scanning of the application code to
identify hotspots. For example servlet in prg below, the set of
hotspots contain a single element: the statement at line 6, 7, 8.
(In Java stability database. based applications, interactions
with the database occur through calls to specific methods in
the JDBC library such as Public class Display extends
HttpServlet { 1. Public ResultSet getUserInfo (String login,
String pwd) { 2. String queryString = “”; 3. Connection con =
DriverManager.getConnection (“connected”); 4. Statement st =
con.createStatement (); 5. queryString = “select info from
usertable where”; 6. If not ((login. equals (“”)) && (pwd.equals
(“”))) { 7. queryString += "login=`" + login + "' AND pass="'
+pwd + "'";} 8. ResultSet tempSet = st.execute (queryString);
}……….. This step identifies the hotspot (6, 7, and 8) and it
divides the hotspot in to tokens and it sends it to query
validation phase.

 i. Monitoring Module. In this module input has been taken
from web application and sends it to analysis module for
validation. If it fails validation (any culprit) it delivers error
message to monitoring module to block further transactions.

 ii. Specifications. It contains contains predefined keywords
and sends it to analysis module for comparisons, these

modules contains all predefined keyword which are stored in
database.

 iii. Analysis Module. In this module it takes input from
monitoring module and finds hotspot from the application,
applies Hirschberg algorithm for string comparison.

 Fig.1. Signature based architecture

In this approach it provides a table which contains

keywords present in the horizontal and vertical line and
compares the incoming tokens with predefined values by
applying this algorithm for identification. In the below sql
statement there is a hotspot identified by analysis module
which sends it to table to find and prevent attacks. Sql stmt =
select * from clients where user = „“&ausername&”‟ and pwd
= „“&apwd&”; By applying the above algorithm the statement
is divided into tokens and validates each token with
predefined tokens using divide and conquer methodology [1].
The injection code is: .Select * from clients where user =
„username‟ and pwd = „anything or „1‟ = „1‟; The analysis
module finds an injection takes place after (anything) this
token to prevent injection attack.

 System Auditing Auditing is a method of tracking the use
of database system availability, resources and authority.
When it is active it provides the information about database
operations like which database object was affected, who and
when performed the operation. By enforcing strict security
policies in DBMS by DBAs‟ they can easily identify
information regarding that who is an authenticated user and
up to which level he is authorized to access data. By enforcing
these standards it can prevent some injection attacks and
moreover it provides support to signature based method to
prevent injection attacks more effectively.

3. CONCLUSION
This paper presents a systematic approach to prevent

injection attacks and protect the web application against those
attacks. Moreover from a conceptual standpoint; the approach
is based on the idea of positive tainting and on the concept of

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

syntax-aware evaluation. From a practical standpoint, our
technique is precise and efficient, has minimal deployment
requirements, and incurs a very low performance overhead in
most cases. By using auditing to analyze the transactions to
prevent malicious access and on the other hand Signature
based approach is used to reduce the time taken to detect and
prevent the attacks. Moreover empirical evaluation is
performed on wide range of web applications and WASP
which automates the task very easily.

REFERENCES

[1]. Christina Yip Chung, "DEMIDS: A Misuse Detection
System for Database Systems", Integrity and internal control
information systems, Pages: 159 - 178, ACM, 2008.

[2]. David Geer (2008), "Malicious Bots Threaten Network
Security".

[3]. G.T. Buehrer, B.W. Weide, and P.A.G. Sivilotti, (2005)
“Using Parse Tree Validation to Prevent SQL Injection
Attacks,” Proc. Fifth Int‟l Workshop Software Eng. and
Middleware, pp. 106-113.

[4]. J. Clause, W. Li, and A. Orso (2007) “Dytan: A Generic
Dynamic Taint Analysis Framework,” Proc. Int‟l
Symp.Software Testing and Analysis, pp. 196-206.

[5]. Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and
Giovanni vigna (2007), " Swaddler: An approach for the
anamoly based character distribution models in the detection
of SQL Injection attacks", Recent Advances in Intrusion
Detection System, Pages 63-86.

[6]. Nguyen-tuong, S. Guarnieri, D. Greene, J.Shirley, and D.
Evans (2005),” Automatically hardening web applications
using Precise Tainting", In Twentieth IFIP Intl, Information
security conference.

[7]. R.Ezumalai, G.Aghila (2009) “A Combinatorial Approach
for Preventing SQL Injection Attacks” IEEE International
Advance Computing Conference 2009.

[8]. S.W. Boyd and A.D. Keromytis (June 2004), “SQLrand:
Preventing SQL Injection Attacks,” Proc. Second Int‟l Conf.
Applied Cryptography and Network Security, pp. 292-302.

[9]. SruthiBandhakavi (ACM, 2007), "CANDID: Preventing
SQL Injection Attacks using Dynamic Candidate Evaluations".

[10]. W.G. J. Halfond and A. Orso (2005), "Combining Static
Analysis and Runtime monitoring to counter SQL Injection
attacks", 3rd International workshop on Dynamic Analysis, St.
Louis, Missouri.

